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moments are immediately seen to be zero by symmetry and the even moments 
are computed using the following theorem. In all cases it is assumed that the 
process begins indefinitely far in the past with 2r finite Initial moments. 

THEOREM 1·. For integer r, the lrth moment of a first-order hnear ARCH 
process with ao > o , 04 2 0 , exists tf , and only if , 

< 1-I (21 - 1)< t. J=t 

A constructive expression for the monients is given tn the proof. 

PROOF: See Appendix. 

The theorem Ls easily used to find the second and fourth moments of a 
first-order process. Letting w, = (y,4, pty, 

E(W, 1*..I) 
(3a' 6a ' oa 

afl , IW
,-1 

The condition for the variance to be finite is simply that al<1, whik to have a 
finite fourth moment it is also required that 3 od < 1. If these conditions are met, 
the moments can be computed from (A4) as 

'~ 3aj ~'I-1--t- ] 1 - 3£d ] (!5> «) == L (' - a'P 
a0 

1 - o:i 

The lower element is the unconditional variance, while the upper product gives 
the fourth moment. The first expression in square brackets is three times the 
squared variance. For oq * 0, the second term is strictly greater than one 
implying a fourth moment greater than that of a normal random variable. 

The first-order ARCH process generates data with fatter tails than the normal 
density Many statistical procedures have been designed to be robust to large 
errors, but to the author's knowledge, none of this literature has made use of the 
fact that temporal clustering of outhers can be used to predict their occurrence 
and minimize their effects. This is exactly the approach taken by the ARCH 
model 

4 GENERAL ARCH PROCESSES 

The conditions for a first-order linear ARCH process to have a finite variance 
and, therefore, to be covariance stationary can directly be generalized for 
pth-order processes. 
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THEOR™ 1·. The pth-order linear ARCH processes, with «~ >0,a„..., otp 
k 0, ts covariance stationary if, and only * the associated characteristic equation 
has att roots outside the unit circle. The stationary variance is gr,en by Etyh = ao / 

(1 - Ef= i OJ). 
PROOF: Sce Appendix. 

Although the pth-order linear model IS a convenient specification, it is likely 
that other formulations of the variance model may be more appropriate for 
particular applications. Two simple alternatives are the exponential and absolute 
value forms: 

(16) /4 = exp(a:o + <kt..P;1_ ,), 
(17) h, = Ko + ally,- l|· 
These provide an interesting contrast. The exponential form has the advantage 
that the variance is positive for all values of alpha, but It is not difficult to show 
tha[ data generated from such a model have infinite variance for any value of 
at 9' 0. The imphcations of this deserve further study. The absolute va[ue form 
requires both parameters to be positive, but can be shown to have finite variance 
for any parameter values. 

In order to find estimation results which are more general than the linear 
model, generat conditions on the variance model will be formulated and shown 
to be implied for the linear process. 

Let (rbeapxlrandom vector drawn from the sample space E, which has 
elements 4; = (E, _t,.,., £_p). For any 4, let 4* be identical, except that the mth 
element has been multiplied by - 1, where m lies between 1 and p. 

DEPINITTON' The ARCH process defined by (1) and (3) is symmetnc tf 

(a) h(i ) = h(4£* ) for any m and (,cZ, 

(b) 34((,)/8a, = ah(e )/aa, for any m, t and 4€E, 

(c) 34(4 )/3¢,_„,= - ah(4*)/3(,-," for any m and 6,#E. 

All the functions described have been symmetric. This condition IS the main 
distinction between mean and variance models. 

Another characterization of general ARCH models is in terms of regutanty 
conditions 

DEFINITION' The ARCH model defined by (1) and (3) is regular if 

Ca) minh (4 ) 2 8 for some 8>0 and E,d, 

(b) E(1@h(t)/30~Ilah(4)/84-„,I 1*,_._1) exists for all t, m, t. 
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The first portion of the definition is very important and easy to check, as lt 
requires the variance always to be positive. This eliminates, for example, the 
Iog-log autoregression The second portion is difficult to check in some cases, yet 
shoutd generally be true if the process is stationary with bounded derivatives, 
Stnce conditional expectations are finite if unconditional ones are. Condition (b> 
is a sufficient condition for the existence of some expectations of the Hessian 
used in Theorem 4. Presumably weaker conditions could be found 

THEOREM 3. The pth-order linear ARCH modet satisfies the regularuy condt-
fions, if ao>0 mida, , .., % 20 

PROOF. See Appendix. 

In the estimation portion of the paper, a very substantial simplification results 
if the ARCH process is syminetric and regular. 

5 ARCH REGRESSION MODELS 

If the ARCH random variables discussed thus far have a non-zero mean, 
which can be expressed as a linear combination of exogenous and tagged 
dependent variables, then a regression framework is appropriate, and the model 
can be written as in (4) or (5). An alternative interpretation for the model is that 
the disturbances m a hnear regression follow an ARCH process. 

In the pth-order linear case, the speciftcatlon and likelihood are given by 

y,\*,-1-N(xrfJ,h,), 
h, = ao + 4€ 2 /-I %€ ,-P, 

(18) €,= y, - x,#, 
T 

l= 4 24 
/=t 

4 = - jlogh, - ld/h" 

where x, may include [agged dependent and exogenous variables and an irrele-
vant constant has been omitted from the likelihood. This likelihood function can 
be maximized with respect to the unknown parameters a and ~. Attractive 
methods for computing such an estimate and its properties are dtscussed below 

Under the assumptions in (18), the ordinary least squares estimator of B is stit[ 
consistent as x and £ are uncorrelated through the definition of the regression as 
a conditional expectation. If the x's can be treated as fixed constants then the 
[east squares standard errors will be correct; however, if there are tagged 
dependent variables m Xt, the standard errors as conventionally computed will 
not be consistent, since the squares of tile disturbances will be correlated with 
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squares of the x's. This is an extension of White's [18] argument on heterosce-
dasticity and it suggests that using his alternative form for the covariaace matrix 
would give a consistent estimate of the least - squares standard errors . 

If the regressors include no lagged dependent var~ables and the process is 
stationary, then letting y and x be the Txl and TxK vector and matnx of 
dependent and independent variables, respectively, 

E(y 3 .X) = XB, 
(19) 

Var(y I x) = 69, 
and the Gauss-Markov assumptions are statisfied. Ordinary least squares is the 
best linear unbiased estimator for the model in (18) and the vanance estimates 
are unbiased and consistent, However, maximum likelihood is different and 
consequently asymptotical[y superior; ordinary least squares does not ach[eve the 
Cramer--Rao bound. The maximum-likelihood estimator is nonlinear and ts 
more efficient than OLS by an amount calculated m Section 6. 

The maximum likelihood estimator is found by solving the first order condi-
bons. The derivative with respect to B ts 

(20) 8!, « _L Md<-2h, aa ~ h, -1; 

The first term is the familiar first-order condition for an exogenous heterosce-
dastic correction; the second term results because h, is also a function of the B's, 
as in Amemiya [l]. Substituting the linear variance function gives 

r , /1 \ aB T 2, ~ h, h, f h, / j 
which can be rewritten approximately by collecting terms Ln x and f as 

(12) ?+ j- hi +A 

The Hesstan is 

F[ X; X 
--

aBBB, - --4 
,_ .1_ .lh .1.9 

2/d 38 E)B' l 
2 

24x; Jh, +1 
2 

tf \ _.L [ -L Mil j aa' [ lh, aB } 
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Takmg conditional expectations of the Hessian, the last two terms vanish 
because h, is entirely a function of the past. Similarly, €f/h, becomes one, since it 
is the only current value in the second term. Notice that these results hold 
regardless of whether x, includes lagged-dependent variables. The information 
matrix is the average over all f of the expected value of the conditional 
expectation and is, therefore, given by 

(23) TE['h 32l, 
aBBB' 

= 1 I ,E[ fh + ._1_ 3& -14] T , [ /4 26/ 3# 3# '] ' 

For the pth order linear ARCH regression this is consistently estimated by 

(24) i "=+E' X;X h, i + 2Iof <zx h7 t-jxf-i 

By gathering terms in x;x„ (24) can be rewrltten, except for end effects, as 

P 1 
(25) inn = 4; Ix;x,1 h,4 + 2€,2 I €h,~~ 

, [ J = 1 
a 4 I X;Xrr,2 

In a slmtlar fas}Hon, the off-dlagotlal blocks of the information matrix can be 
expressed as: 

(26) j 4 =t FE( 1 ah, ahr ) 
* lis- Tli. ) 

The important result to be shown in Theorem 4 below is that this off-diagonal 
block Cs zero. The implications are far-reaching in that estimation of a and B can 
be undertaken separately without asymptotic loss of efficiency and their van-
ances can be calculated separatety 

TH£01&™ 4·. If an ARCH jegr€ssion model iS symmetric and regular, then 
48 =o. 

PROOF. See Appendix. 

6 ESTIMATION OF THE ARCH REGRESSION MODEL 

Because of the block diagonality of the information matrix, the esttmation of £9 
and B can be considered separately without loss of asymptotic efflciency 
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Furthermore, either can be estimated with full efficiency based only on a 
consistent estimate of the other. See, for example, Cox and Hinkjey [6, p. 308]. 
The procedure recommended here IS to initially estimate B by ordinary least 
squares, and obtain the residuals. From these residuals, an efficient estimate of a 
can be constructed, and based upon these d estimates, efficient estimates of B are 
found. The iterations are calculated using the scoring algorithm. Each step for a 
parameter vector + produces estimates +'+l based on 0' according to 

@7) *,+1=4),+[i , i-~.1_ r 3-i~ 
"j T ¥ 8+ ' 

where 5' and 8 l//@+ are evaluated at *'. The advantage of this algorithm IS 
partly that it requires only first derivatlves of the likelihood function in this case 
and partly that it uses the statistical properties of the problem to tailor the 
algorlthm to this application 

For the pth-order linear model, the scoring step for a can be rewritten by 
substituting (12), (13), and (14) into (27) and interpretingy,2 as the residuals e,2, 
The iteration is simply 

(28) a'+'=a'+(Ff)-li'f 

where 

e?-A/h;, 

j" = UL'.. 'frj 
In these expressions, e, is the residual from iteration f, h; is the estimated 
conditional var£ance, and a ' is the estimate of the vector of unknown parameters 
from iteration i. Each step ts, therefore, easily constructed from a least-squares 
regression on transformed variables The variance-covariance matrix of the 
parameters ts consistently estimated by the inverse of the estimate of the 
information matrix divided by T, which is simply 2(Fz) - ', This differs slightly 
from 82(Y,2) - t computed by the auxiliary regression. Asymptotically, 82 = 2, if 
the distnbutional assumptions are correct, but it ts not clear which formulation is 
better in practice. 

The parameters in a must satisfy some nonnegattvity conditions and some 
stationarity conditions. These could be imposed via penalty functions or the 
parameters could be estimated and checked for conformity. The latter approach 
is used here, although a perhaps useful reformulation of the model might employ 
squares to impose the nonnegativity constraints directly: 

(29) h,= a~+ak,1-1+- +ON-p 
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Convergence for such an iteration can be formulated in many ways. Following 
Bclslcy [3], a simple criterion is the gradient around the inverse Hessian. For a 
parameter vector, 0, this [s 

(30) e = t all ) 
l 3+3*, j 

/ 31 *. 
Using # as the convergence cnterion is attractive, as it provides a natural 
normalization and as it Is mterpretab[e as the remainder term in a Taylor-series 
expansion about the estimated maximum. In any case, substituting the gradient 
and estimated information matrix in (30), 0=R2 of the auxiliary regression. 

For a given estimate of a, a scoring step can be computed to improve the 
estimate of beta. The scoring algorithm for # is 

(31) 18,+I=B,11-[i i - t al' 
#B \ TB. 

Defining f , = x , r , and Z , = eAI rt with x and e - as the corresponding matrix and 
vector, (31) can be rewritten using (22) and (24) and e, for Che estimate of 4 on 
the ith iteration, as 

( 32 ) B '+ 1 = B ' + ( f ' 2 ) - 1 *, Z 

Thus, an ordinary least-squares program can again perform the scoring iteration, 
and (f'.f) - i from this caku[atton will be the final vartance-covanance matrix of 
the maximum likelihood estimates of B 

Under the conditions of Crowder's [7] theorem for martingales, it can be 
established that the maximum likelihood estimators & and d are asymptotically 
normally distributed with limiting distribution 

v'T(& - a) AN(o,C)i 
(33) 

JT(8-13)E+Nlo,§2). 

7 GA[NS [N EFFICTENCY FROM MAXIMUM LIKELIHOOD ESTIMATION 

The gain in efficiency from using the maximum-likelihood estimation rather 
than OLS has been asserted above. In this section, the gains are calculated for a 
special case. Consider the hnear stationary ARCH model with p=1 and all xr 
exogenous. This is tile case where the Gauss-Markov theorem applies and OLS 
has a variance matrix 01(x,X) -1= Ef,1(I fx;x,) -t. The stationary variance is 
02 = ao/(1 - 4). 

The information matrix for this case becomes, from (25), 

£[ Dqx,(h,- ' + 2£>t/h,t t)]· 
L t 1 
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With x exogenous, the expectation ts only necessary over tile scale factor. 
Because the disturbance process is stationary, the variance-covariance matrix is 
proportional to that for OLS and the relative efficiency depends only upon the 
scale factors. The relative efficiency of MLE to OLS IS, therefore, 

R = E(h,-' + 2<>~/h,2+ t)92· 

Now substitute h, = ao + aid- i, 62 = ao/i - al, and y = a Jl - al. Recogniz-
ing that d-, a-nd 4 have the same density, define for each 

u = 4(1 - a~}/ao. 

The expression for the relative efficiency becomes 

(34) R - 4 1+7 ' 
T-¥32, 

2 ~ + 2* U 

(1 + yuz) 2 

where u has vanance one and mean zero. From Jensen's incquality, the expected 
value of a reelprocal exceeds the reciprocal of the expected value and, therefore, 
the first term ts greater than unity The second IS positive, SO there is a gain in 
efficiency whenever 7 * 0. Eu -2 is infinite because u2 is conditionally chi 
squared with one degree of freedom. Thus, the limit of the relative efficiency goes 
to infinity with y: 

lim R-> oo. 
7->00 

For a, close to unity, the gain in efficiency from using a maximum likelihood 
estimator may be very large. 

8 TESTING FOR ARCH DISTURBANCES 

In the Linear regression model, with or without tagged-dependent variables, 
OLS is the appropriate procedure zf the disturbances are not conditionally 
heteroscedastic. Because the ARCH model requires iterative procedures, it may 
be desirable to test whether it iS appropriate before going to the effort to estimate 
lt The Lagrange mullipber test procedure is ideal for this as in many similar 
cases See, for example, Breusch and Pagan [4, 5], Godfrey [12], and Engle [9]. 

Under the null hypothesis, a, =t'*'=ap=0 The test is based upon the 
score under the null and the information matrix under the null Consider the 
ARCH model with h, = h(z, a), where h is some differentiable function which, 
therefore, includes both the linear and exponential cases as well as lots of others 
and z, = (1, ek I, ·, , e,2-p) where e, are the ordinary least squares restduals 
Under the null, h, is a constant denoted ht Writing Ah,/3,7 = h'z;, where h' LS 
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the scalar derivative of h, the score and information can be written as 

-QL l - _£- I z; C aa lo 2/,0 , \ 
e 
ho 

-11 
hO' 
yi~i Z'f, 

1 1 7 0, ) 2 4 = tl li J EZ,2, 
and, therefore, the LM test statistic can be consistently estimated by 

(35) 6* = ifo'z(z'z)-'z'f° 

where z'= (21, . . . , 4), jo is the column vector of 

e 
ho - 11 

This is the form used by Breusch and Pagan [4] and Godfrey [12] for testing for 
heteroscedasticity. As they point out, all reference to the h funcbon has dis-
appeared and, thus, the test is the same for any A which is a function olily of z,a. 

In thLS problem, the expectation required tn the informat,on matrix coutd be 
evaluated quite simply under the null; this could have superior finite sample 
performance A second simphfication, which is appropriate for this model as well 
as the heteroscedastieity model, is to note that plim f"f°/T=2 because normal-
Lty has already been assumed. Thus, an asymptotically equivalent statistic would 
be 

( 36 ) E = TjQ ' z ( z ' zj - ' z ' j < Vf °' j ° = TR1 

where R 2 Is the squared multiple correlation between fo and z. Since adding a 
constant and multiplying by a scalar will not change the R 2 of a regression, this 
is also the R 2 of the regression of e,2 on an intercept and p tagged values of e,2 
The statistic will be asymptoticaIIy distributed as chi square with p degrees of 
freedom when the null hypothesis is true. 

The test procedure is to run the OLS regression and save the residuals. Regress 
the squared residuals on a constant andp [ags and test TR 2 as a xt This will be 
an asymptotically locally most powerful test, a characterization it shares with 
hkehhood ratio and Wald tests. The same test has been proposed by Granger 
and Anderson [13] to test for higher moments in bilinear time series. 

9 ESTIMATION OF THE VARIANCE OF [NFLATTON 

Economic theory frequently suggests that economic agents respond not only to 
the mean, but also to higher moments of economic random variables. In 
finaiicial theory, the variance as well as the mean of the rate of return are 
determinants of portfoljo decisions. In macroeconomics, Lucas [16], for example, 
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argues that the vartance of mflation is a determtnant of the response to various 
shocks. Furthermore, the varmnce of inflation may be of independent interest as 
it is the unanticipated component which is responsible for the bulk of the welfare 
loss due to inflation. Friedman [ll] also argues that, as high inflation will 
generally be associated with high variabihty of inflation, the statistical relation-
ship between inflation and unemployment should have a positive slope, not a 
negative one as in the traditional Phillips curve. 

Measuring the vanance of inflation over time has presented problems to 
various researchers. Khan [14] has used the absolute value of the first difference 
of inflation whi[e Klein [15] has used a moving variance around a moving mean. 
Each of these approaches makes very simple assumptions about the mean of the 
distribution, which are inconsistent with conventional econometric approaches. 
The ARCH method allows a conventional regression specification for the mean 
function, with a variance which is permitted to change stochastically over the 
sample period. For a comparison of several measures for U.S. data, see Engle 
[10] 

A conventional price equation was estimated using British data from 1958-II 
through 1977-It. It was assumed that price inflation followed wage increases; 
thus the model is a restricted transfer function 

Letting J# be the first difference of the log of the quarterly consumer price 
index and w be the log of the quarterly index of manual wage rates, the model 
chosen after some experimentation was 

( 37 ) P = fhj~ -- l + DIP - At Alp -- 5 t 04 ( Jt - ~1 )) -- \+. 135 · 

The model has typical seasonal behavior with the first, fourth, and fifth tags of 
the [Lrst difference. The tagged value of the real wage is the error correction 
mechanism of Davidson, et at. [8], which restricts the lag weights to give a 
constant real wage in the jong run. As this is a reduced form, the current wage 
rate cannot enter, 

The least squares estimates of thts mode[ are given in Table I. The fit is quite 
good, with [ess than 1 per cent standard error of forecast, and all t statistics 
greater than 3. Notice that 4-4 and p-5 have equal and opposrte signs, suggesting 
that it is the acceleration of inflation one year ago which explains much of the 
short-run behavior in prices. 

TABLEI 
ORDINARY LEAST SQUARES (36)' 

Variable P-, P-4 P-3 C P - Wi - l Const .'<I'O-6~ Il 

Coeff. 0 334 0408 - 0.404 - 00559 0 0157 89 0 
St. Err. 0.103 0 [to 0.tl4 0.0136 000572 
r Stat 3 25 3 72 3.55 4 12 4 49 

* Dependent variable p - 1*P) - log(P .,) where P is quar(erly UK consumer pace index w=log( IF> 
where W is the U K. mdex d manual wage rates Sample period 1953-[1 {o 1977-H 
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To establish the reliability of the model by conventional criteria, it was tested 
for serial correlatton and for coefficient restrictions. Godfrey's [12] Lagrange 
multiplier test, for serial correlation up to sixth order, yields a chi-squared 
stattsttc with 6 degrees of freedom of 4 53, which iS not significant, and the 
square of Durbin's h is 0.57. Only the 9th autocorrelation of the least squares 
reslduals exceeds two asymptotic standard errors and, thus, the hypothesis of 
white noise disturbances can be accepted. The model was compared with an 
unrestricted regressiott, including all Iagged p and w from one quarter through 
six. The asymptotic F statistic was 2.04, which is not significant at the 5 per cent 
level. When (37) was tested for the exclusion of w_, through w-6, the statistic 
was 2.34, which is barely significant at the 5 per cent but not the 2.5 per cent 
level. The only variable which enters significantly in either of these regresslons is 
W -6 and it seems unattractive to include this alone. 

The Lagrange multiplier test for a first-order linear ARCH effect for the model 
tri (37) was not significant, However, testing for a fourth-order linear ARCH 
process, the chi-squared statistic wilh 4 degrees of freedom was 15 2, which is 
highly significant. Assuming that agents discount past residuals, a linearly 
declining set of weights was formulated to give the model 

(38) ht - aa + al(0·4¢- i + 0·34-1 + 0,2¢-3 + O.I ~-4) 

which is used in the balance of the paper. A two-parameter variance function 
was chosen because it was suspected that the nonnegattvity and stationarity 
constraints on the a's would be hard to satisfy tn an unrestricted model. The 
chi-squared test for at = 0 in (38) was 6.1, which has one degree of freedom. 

One step of the scoring algorithm was employed to estimate model (37) and 
(38). The scoring step on a was performed first and then, using the new efficient 
d, the algorithm obtains in one step, efficient estirnates of B. These are given in 
Table II. The procedure was also iterated to convergence by doing three steps on 
a, followed by three steps on #, followed by three more steps on e, and so forth. 
Convergence, within 0.1 per cent of the final values occurred after two sets of a 
and 2 steps. These results are given in Table III. 

The maximum likelihood estimates differ from the least squares effects primar-
ily in decreasing the sizes of the short-run dynamic coefficients and increasing 

TABLEII 
MAXIMUM LIKELIHOOD EsT[MAIES OF ARCH MoDRL (36) (37) 

ONE-STEP SCORING ENT[MATES' 

Varxabl , P -' P -. p - 3 ( P - W )- 1 Const . *( XIO - 4 ) ' 1 

Coeff 0210 0.270 - 0 334 - 00697 00311 l9 0.846 
St Err. 0.110 0.094 0109 0.0117 000498 14 0.243 
f Stat. {90 2.86 306 5 98 6 44 1.32 3 49 

• Dapendent vafiablep = Iog(P) - log<P_i) where P d quarterty UK. consumer pricc index w -log{ W) where 
W ig ike U K iade. of marlual wAge <ates Sample period 1958-H to 1977.IL 
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TABLEIH 
MAXIMUM L[KEUHOOD Es'rtku·ra op ARCH MODEL (36) (37) 

ITERATED ESTIMATES' 

Variabl ¢ 6 p _, p -' P - I ( P - W )- C €} nst ' 0 ( xto - 4 ) 
Cocff 0. [62 0 264 -0.325 -0 0707 0.0328 U 0955 
St. Err 0t08 0 0892 00987 00[13 0 00491 85 0298 
t Stat 150 2.96 3.29 617 6 67 I 56 3.20 

'Dependenc variable p = log(P) - log(P- l) where P is quarerly U K eonlumer pr,u index w = [08(W } wlwre W 
is ihe U K iedex 01 runuat wage rat. Sample period 19SNZ (o 1977-It 

the coefficient on the long run, as incorporated ln the error correction mecha-
nism. The acceleration term is not so clearly implied as in the least squares 
estimates. These seem reasonable results, since much of the inflationary dynam-
ics are estimated by a period of very severe infla.tlon m the middle seventies. 
This, however, is also the period of the largest forecast errors and, hence, the 
maximum likelihood estimator will discount these observations. By the end of the 
sample period, inflationary levels were rather modest and one might expect that 
the maximum likelihood estimates would provide a better forecasting equation. 

The standard errors for ordinary least squares are generally greater than for 
maximum likelihood. The least squares standard errors are 15 per cent to 25 per 
cent greater, with one exception where the standard error actually falls by 5 per 
cent to 7 per cent. As mentioned earber, however, the least squares estimates are 
biased when there are tagged dependent variables. The Wald test for at = 0 LS 
also significant. 

The final estimates of h, are the one-step-ahead forecast variances. For the 
one-step scoring estimator, these vary from 23 x 10-6 to 481 x 10-6. That is, the 
forecast standard deviation ranges from 0 5 per cent to 2 2 per cent, which is 
more than a factor of 4. The average of the h„ since 1974, is 230 x 10- 6, as 
compared with 42 x 10-6 during the last four years of the sixues. Thus, the 
standard deviation of inflation increased from 0.6 per cent to 1.5 per cent over a 
few years, as the economy moved from the rather predictable SixtteS Into the 
chaotic seventies 

In order to determine whether the confidence intervals arising from the ARCH 
model were superior to the least squares model, the outliers were examined. The 
expected number of residua[s exceeding two (conditional) standard deviations Ls 
3 5. For ordinary least squares, there were 5 while ARCH produced 3. For leas{ 
squares these occurred in '74-I, *75-I, '75-II, '75-IV, and '76-II; they all occur 
within three years of each other and, tn fact, three of them are in the same year. 
For the ARCH mode[, they are much more spread out and only one of the least 
squares points remains an outlier, although the others are still large. Examining 
the observations exceeding one standard deviation shows similar effects. In the 
seventies, there were 13 OLS and 12 ARCH residuals outside one sigma, which 
are both above the expected value of 9. In the sixties, there were 6 for OLS, 10 
for ARCH and an expected number of 12. Thus, the number of outbers for 
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ordinary least squares Ls reasonable; however, the timing of their occurrence is 
far from random, The ARCH model comes closer to truly random residuals after 
standardizing for their conditional distributions. 

This example illustrates the usefulness of the ARCH model for improving the 
performance of a least squares model and for obtaining more rea[istic forecast 
variances 

Unrversity of California, San Diego 

Manuscript received July, 1979; final rewslon received J uly, ] 981 

APPENDtX 
PROOF OF THEOREM t Let 

(Al) w; = (.}fr, .Pt 2(r-4 2) 

First, tt zs shown that there +5 an upper trmngular ixr matrix A and ixl vector b such that 

<Al) E(w, I+,_,) -b+,lw,_ j 

For any zero-mean normal randomvanabte u, with vartance 62, 

EC „zr) = 11' I-I (lj - t) 
Because the conditional distrtbution ofy is norma[ 

(A3) EOfm 1 G-,)= h,lm II (21 - t) 
,-1 

>(a,yl,+ ao)„',ll (2/ - t). 
Expanding this expression establishes that the moment ts a linear combination of w, ., Furthermore, 
only powers of y Iess than or equal to 2m are required, therefore, A Ln (A2) is upper tnangu|ar 
Now 

E(w, I *,_ 2)=b+A(b + AW, - 1) 

or in geaeraI 

Because the series starts mdehrtte[y far m the past w,th 2r ftnae moments, [he hmit as k goes to 
tnftntty exists if, and only if, atl the etgenva[ues of A tte within the unit circle 

The limit can be wnt(en as 

~'rL E(w, I +,.*) - (/ - A) - 'b, 

which does not depend upon the conditioning vanables and does not depend upon t. Hence, thls zs 
an expression for the stationao, moments of the unconditional dts[rtbutlon ofy 
(A4) 
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It remains only to establish (hal the conditon in the theorem is necessary and sufficient [o have all 
eigenvatues he wtthm the unit ctrcle As the matrix has already been shown to be upper triang Ular, 
the diagonal etemea[s are the eigenvalues From (Aj), it is seen that the diagonal elements are simply 

.r I-I (v-') = n a/(V - 1) m 8„, 
J =\ ,= 1 

form=1,.. ,r. tf 8 exceeds or equals unity, the ctgenvalues do not he m the Unit Circle It must 
also be shown that if 8,<1, then 8,„ <l for a[1 m <r Notice thal 0„, Isa product of iii factors which 
are monoiontcally increastng Jf the mth factor is greater than ore, tken 6„,- i will necessardy be 
smaller than 8„,. If the mth factor is [ess (han one, all the other faccors must also be tcss than one and, 
[herefore, #„,_, must also have all factors less thaa one and have a value less than one. Th,s 
establi~hes that a necessary aad suffic,en t conditton fof all dragonal elements lo be Iess than one is 
that # r < t , which is the statement in the theorem . QED . 

PROOF OF THEOREM 2- Let 

'.yt-I' 

Then in terms of the companion matrix W, 

(Aj> E(w, I *,_ t} =6+ Aw,_ i 

where b' = (ao,0, ., 0) and 

o o1 I, , 01 
1 --- 0 ol 0 1 oj 

Taking successivc expectations 

EG•A*,. t~ -U + A + Al + 

Because the series starts indefinitely far in the past with hnite varmncc, if, and only if, all eigenvalues 
l,e within the unit circle, the limit exwts and iS g,Ven by 

(A6) k[CQE(w, 144_.*) . (l - ,{)- tb 

As thls does not depend upon Inztiat conditions or on L, this vector 1s the common vartance for att i 
As is wei| known in time series ana[ys[s, this condmon is equtvalen[ to the condmen ttlat IU the roots 
of the characlemtic equation, formed from the <r's, tte outside the umt circle. See Anderson [2, p 
177] Finally, the hmit of the first e[emeat can be rewritten as 

/ P\ 
( A7 ) Ey , 2 - ~o / Il - Ea ,| QED 

i l /% ! / 

PRooF oF THEOREM 3 Clearly, under the conditions, A(f,) 2 ao > 0, establishing part (a) Let 

- E(13h (0 ) /0 a i 18h(4, ) / 84 _ „,1 *, _„,_ :) 

- 24.E(14-,l'14_-1*,_m-l) 

Now there are three cases; , > m, i = m, and i < m If i > m, then t_, € +,_„,_i and the 
conditional expectation of K_„,1 is finite, because the conditional density 5 normal If i = #n, then 
theexpectaoonbecomes £(It_ „,FI *_-_ I) Agaln, because the conditional density Is normal, all 
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moments exist includzng l'e expectation of the third power of the absolute value If , < m, the 
expectatton is taken in two parts, ftrst wah respect to t-i- [ 

+,m, = 2.„,E (I4_JE(C_, I +,_ _ :) I *,-;„_ 1} 
P 

=2,„,g <lf,_„,Iao+ X *L-j)1+,-m-i Jm' j 

-k,doE{(,_~|+,_M,_1) + I %* 

In the final expr¢SSLO[1, the initial Index cn ¢> is larger and, therefore, may fall Into either of the 
preceding cases, which, therefore, establishes Ihe existence of the term. If there remain terms with 
I +j< m, the recursion can be repeated As alt tags are finite, an expression for *, m, can be written 
as a constant tlmes the third absolute moment of 4,_,„ coodltlonal on *,-m-t, Plus another constant 
timcslhe firstabsolute moment Asthese are both condttionallynormal, andastheconstants must be 
flnite as they have a finite number of terms, thc second part of the regularity condition has been 
estab [ ished Q E . D . 

To establish Theorem 4, a careful symmetry argument Ls required, beginning with the following 
kmma. 

UEMM,c Lkt u and o be any two mdom varicbles E(g(u, d) \ oj wifl be an anti-symineiF,e funcno„ 
of D tf g ts an<t-:ymmelric in o, rhe conditionoi denstty of ulu u .symmefrie m o, and ihe expecia[ion 
eX/tS. 

PROOF: 

E(g(u, - o) £ - o) = - E(gO,AI - o) because g is anti·symm€tnc In D 

- - E(g(u, 0) [ o) because the eondittona[ densjiy Is symmetric. 

QED 

PROOF oP THEOREM 4 Thei, J element of U ts given by 

(i<4?),U=6:FE< t 3/i, 34, ) 
,¢ 8., BO; } 

2T 
p i 

IIEI t 0,= l L 
-L 1 ah, 1 
h) 80(, Ti~5., by the chain rule 

If the expectation of the term in square brackets, eondiuonal on *,-,- i , is zero for all 4.1,6 m, then 
the theorem ,s proven 

E1 'lh 2 47 a~ 81 - . J 

< 1 3& --ap 
i h,; aa, 3'' - m 

because xj. _. is either exogcnous or it Ls a !agged dependent vanab[e, tn which case il ts mcluded tn 
6-.-I 

IEI ' i 8h, ah 
h.? @a, 3/, -Lit>-"1-/ SE 

i / 8h, ah, t 1} Ilp/-,„„ - 'j - ii E l WR 8 . 
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by part (a) of the icgulartty conditions and this integral is finite by parl (b) of the condition Hence, 
each term is finite. Now iake the expectation m two steps, first wah respect io +,_ m This must 
therefore also be f~rute 

El 
t 3h, 3A 

h' aa, 3£,_ 
By the symmetry assumption, h,- ~ is symmetric ta e, _ -„ Jh,/*,_,U Is anti-symm¢tnc Therefore. 

the whole expression is antt·symmelne In €,_„„ whtch {s part of the conditioning set *,-„, Because h 
Is symmetric, (hc conditional density must be symmetric m £,_„, and the lemma can be invoked to 
show that g(€,_,„) is anti-symmetric 

Fi[Ial[y, takir,g expectations of g cotduional on *_ „,-, gwes zero, because the density of t,_ ., 
conditional on the past is a symmetric ( normal ) density and the theorem 1S established QED 
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Econometrica, Vol. 55, No. 2 (March, 1987), 391-407 

ESTIMATING TIME VARYING RISK PREMIA IN THE TERM 
STRUCTURE: THE ARCH-M MODEU 

BY ROBERT F. ENGLE, DAVID M. L]LIEN, AND RussELL P. RoMNS 

The expectation of the excess holding yield on a long bond is postulated to depend 
upon its conditional variance. Engle's (1982a) ARCH model is extended to allow the 
conditional variance to be a determinant of the mean and is called ARCH-M. Estimation 
and inference procedures are proposed and the model is applied to three interest rate data 
sets. In most cases the ARCH process and the time varying risk premium are highly 
significant. A collection of LM diagnostic tests reveals the robustness of the model to 
various specification changes such as alternative volatility or ARCH measures, regime 
changes, and interest rate formulations. The model explains and interprets the recent 
econometric failures of the expectations hypothesis of the term structure. 

KEYWORDS: Term structure, financial models, ARCH, risk premium, heteroskedasticity, 
nonlinear models. 

1, INTRODUCTION 

ALTHOUGH THE VALUATION of risk is the central feature of financial economics, 
the standard methods for measuring and predicting risk are extraordinarily simple 
and unsuited for time series analysis. As the degree of uncertainty in asset returns 
varies over time, the compensation required by risk averse economic agents for 
holding these assets, must also be varying. Time series models of asset prices 
must therefore both measure risk and its movement over time, and include it as 
a determinant of price. Any increase in the expected rate of return of an asset 
as it becomes more risky will be identified as a risk premium. 

The importance of such risk premia in the term structure of interest rates has 
been highlighted by a series of papers which all find the traditional expectations 
hypothesis inadequate to explain the observed data. For some recent examples 
see Shiller (1979, 1981), Sargent (1979, 1972), Shiller, Campbell, and Schoenholtz 
(1983), Mankiw and Summers (1984), and Campbell (1984). Some of these are 
based upon tests which find the variance of long term rates too large to be 
consistent with the expectations hypothesis. Others are based on regression tests 
which essentially show that the implicit predictors of future interest rates, deriv-
able from the term structure, are inefficient and biased. Information available at 
the time could have improved the accuracy of the forecasts. Stated another way, 
these tests find that the one period rate of return which should, ex ante, be 
unforecastable, could have been predicted using available information. 

These findings are generally interpreted as implying either some form of less 
than fully rational expectations, or time varying premia on different term debt. 
Attempts by Shiller, Campbell, and Schoenholtz (1983) and Mankiw and Summers 
(1984) to model particular forms of irrational expectations were unsuccessful. 

' The authors are indebted to many for helpful comments including Bob Shi!]er, Larry Summers, 
Clive Granger, Ross Starr, Ken Wallis, David Hendry, Larry Weiss, and James Tobin, but retain 
responsibility for remaining errors. Computations were carefully carried out by Tim Bolleralev and 
Yoahi Baba. 
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Consequently, the main thrust of this literature is to introduce the possibility of 
time varying term premia. Amsler (1984) and Pesando (1983) have extended 
Shiller's variance bounds to allow time varying term premia. Campbell (1984) 
and Mankiw and Summers (1984) estimate or derive statistics about the required 
properties of time varying term premia. The latter conclude: "Most of the changes 
in the slope of the yield curve reflect these changing liquidity premiums or 
expectations that do not satisfy the standard postulates of rationality. These 
results suggest the importance of developing models capable of explaining fluc-
tuating liquidity premiums." 

The key postulate in the current paper is that time varying premia on different 
term debt instruments can be well modeled as risk premia where the risk is due 
to unanticipated interest rate movements and is measured by the conditional 
variance of the one period holding yield. While this is in the spirit of Bodie, 
Kane, and McDonald (1983) and Fama (1976), new econometric techniques are 
needed to estimate and test this model and these are developed here. 

The autoregressive conditional heteroscedasticity (ARCH) model introduced 
by Engle (1982a), explicitly models time varying conditional variances by relating 
them to variables known from previous periods. In its standard form the ARCH 
model expresses the conditional variance as a linear function of past squared 
innovations; in markets where price is a Martingale, price changes are innovations, 
and this corresponds precisely to the Mandlebroit (1963) observation: "Large 
changes tend to be followed by large changes-of either sign-and small changes 
tend to be followed by small changes.. ." The ARCH model is used to provide 
a rich class of possible parameterizations of heteroscedasticity. 

This paper introduces the ARCH-M model which extends the ARCH model 
to allow the conditional variance to affect the mean. In this way changing 
conditional variances directly affect the expected return on a portfolio. This 
resolves many of the empirical paradoxes in the term structure. Variables which 
apparently were useful in forecasting excess returns are correlated with the risk 
premia and lose their significance when a function of the conditional variance 
is included as a regressor. Furthermore, the heteroscedasticity in the disturbances 
had biased the test statistics, leading to the false finding of significant variables. 

This model is applied to six month treasury bills, to two month treasury bills, 
and to 20 years Aaa corporate bonds to determine whether there appear to be 
time varying risk premia and how large they are. Section 2 develops a theoretical 
model of the relationship between means and variances which is formulated as 
a statistical model in Section 3. Section 4 describes the ARCH-M model and 
Sections 5 and 6 present the applications. Section 7 is a summary. 

2. A MODEL OF THE RELATION BETWEEN RISK AND RETURN 

Risk averse economic agents require compensation for holding risky assets. In 
the simplest set-up of one risky asset with normally distributed returns and one 
riskless asset, the risk is measured by the variance of the returns from holding 
the asset, and the compensation by a rise in the expectation of the return. The 
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relation between the mean and the variance of the returns which will insure that 
the asset is fully held in equilibrium will depend upon the utility function of the 
agents and the supply conditions of the assets. 

To investigate this relation we now suppose that in this two asset economy the 
variance of the payoff of the risky asset may change over time and consequently 
the price offered by risk averse agents will change over time. This equilibrium 
price determines the relation between the mean and variance of the excess returns 
from holding.the risky asset and therefore how the risk premium is related to 
the variance of the returns. 

Consider a world with two assets, one has price 1 and is perfectly elastically 
supplied at a sure total rate of return r. The other has a price p and yields a 
random total return q (denominated in units of the numeraire) which has mean 
8 and variance * Wealth W, measured in units of the riskless asset, is therefore 
allocated between shares of the sure asset x, and shares of the risky asset s, so that 

(1) W=PS+X. 

The excess return per dollar invested in shares of the risky asset is given by 

y = (q/p) - r, 

so that the mean and variance of the excess returns is given by 

( 2 ) E ( y )= p =( 8 / p )- r , Y ( yj = e = 0 / f . 

Agents maximize expected utility of the end-of-period wealth, which, assuming 
normality of the returns, means that only the first two moments of the distribution 
matter. Under constant absolute risk aversion, expected utility can be expressed 
by: 

EU=2E(qs + rx)-bV(qs + rx) 

and it will be maximized by choosing 

(3) sp = B/(b/). 

Now suppose 0 has a time subscript and is known to agents although not to 
the econometrician. Then the equilibrium values of p, B, c·2, and s will also vary 
over time. If in equilibrium the value of the outstanding shares of the risky asset 
remains constant, then the mean return will be proportional to the variance of 
returns since s,p, in (3) is a constant. 

A convenient assumption is that the riskless asset is held in zero net supply 
so that r becomes endogenous. The value of the outstanding shares of the risky 
asset is simply W. The mean and variance will therefore be proportional regardless 
of the supply elasticity of s if both wealth and b are constant. Such a model, 
however, leaves no role for price in evaluating risk. 

If, instead, the physical number of shares is fixed so that s, = s and r is fixed, 
then in equilibrium (4) can be rewritten 

p' + p,tr, = bscr~ 0 
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and, suppressing time subscripts, 
(4) B =[-rtv/r2+4bso·281/2 

so that the mean will be zero when the variance is zero, the slope is always 
positive, and for large variance the mean is proportional to the standard deviation. 
Thus if 0 varies over time, but r, s, and 8 do not, the econometrician should 
expect to see a relation between observed means and variances of returns which 
makes them move in the same direction but not proportionally. 

For more general utility functions b will itself be a function of other variables 
such as /. Thus we can replace b in (4) with b(c,2). Furthermore, there may be 
some elasticity of supply of the risky asset so that 

s=ftp) =fle / lp, + r)) 

can be substituted for s. With these two flexible functions it is possible to find a 
wide range of relationships between observed means and variances. 

Thus in general, one might expect the mean to increase less than in proportion 
to the variance with the precise relation determined by the supply eIasticity of 
the risky (and possibly the riskless) asset and the risk preferences of agents. This 
paper introduces some empirical evidence on this relationship. 

3. FORMULATION OF THE MODEL 

Letting B, be the risk premium, y, the excess holding yield on a long bond 
relative to a one period treasury bill, and g, the difference between the ex ante 
and ex post rate of return which in efficient markets would be unforecastable, 
(5) yt = B,+ Ei, Var (g, Iall available information) = h,2. 

It is assumed that the risk in holding a long bond is not diversifiable so that only 
the variance matters. The initial specification takes the mean as a linear function 
of the standard deviation: 

(6) 8,=B+ 84 
A nonzero value of 13 might reflect the Iinearization of a nonlinear function such 
as that derived above, or a preferred habitat argument. The choice of the standard 
deviation represents the assumption that changes in variance are reflected less 
than proportionally in the mean. Empirically, the log of h, is found to be even 
better. 

A complication in the interpretation of 8, arises from the differential tax 
treatment of capital gains and interest income. Under the tax laws, long term 
capital gains are taxed at a lower rate than ordinary interest income and short 
term capital gains. This feature of the tax system makes a strategy of investing 
in long term bonds more desirable than rolling over short term paper. Investors 
can, to a large extent, treat one period capital losses as ordinary income for tax 
purposes by selling the bond and realizing their losses. Short term capital gains 
can be turned into long term capital gains for tax purposes by holding the bond 
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fora yearor longer. Because this choice canbe madeex post, after Y, is observable, 
risk neutral investors should be willing to hold long term bonds at a lower 
expected pre tax yield than is paid on treasury bills. This tax advantage may 
explain the fact that the average value of Y, for many types of long term bonds, 
has been below the average short term treasury bill rate over the last 30 years. 
We might therefore expect B < 0. 

To complete the specification of the model, h,2, the conditional variance, must 
be parameterized as a function of the information set available to investors. We 
assume that the most useful information to agents are the previous innovations 
or surprises 4. If these have been large in absolute value then, extending 
Mandlebroit's observation, they are likely to be large in the future. In its simplest 
form we postulate that 

P 
(7) h,2= ao-t-a: I W,82,-i. 

i=! 

The conditional variance as observed by both the economic agents and the 
econometrician is a weighted sum of past squared surprises. One can discount 
older innovations in this weighting scheme. 

Other variables which are in the information set at time t could also be 
introduced into (7) in the fashion of more traditional heteroscedasticity correc-
tions. One such suggestion would be to use the squared changes in price as 
analyzed by Mandlebroit. Such a specification misses the fact that in the bond 
market a portion of the price change may be anticipated and this information is 
unlikely to be useful in forecasting changes in variance. 

In the next section, the estimation and testing of the model in (5), (6), and (7) 
is considered in a more general context. In the following three empirical analyses, 
many of the caveats discussed above are then put to test. 

4. ESTIMATING AND TESTING THE ARCH-M MODEL 

The economic model described in the previous section incorporates an impor-
tant extension of Engle's (1982a) ARCH model or in fact any heteroscedastic 
model; not only are the disturbances heteroscedastic, but the standard deviation 
of each observation affects the mean of that observation. In this section the 
estimation and testing of such models, called ARCH in mean or ARCH-M models, 
is discussed. 

The general setup is given by 

(8) Y,IX„lI,-N(B'X,+6h„h,2), 
h,' = a' W~, + y'Z„ 

where X, and Z are kxl and jx1 vectors of weakly exogenous and tagged 
dependent variables, as in Engle, Hendry, and Richard (1983). The vector Z, 
includes a constant whose coefficient represents the constant variance component 
of hr. The pxl vector 71; = (8,-„ ..., E:-p) where E, are the disturbances given 
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by Y, - B'Xr - ahr. The matrix Wisaqxp array of fixed constants which may 
be used to impose restricted parameterizations on the response of the conditional 
variance to past squared residuals. In the most unrestricted case, W would be 
the identity matrix. The variance parameter vectors a and y are therefore qxl 
and jxl respectively while the mean parameter vectors B and 6 are kxl and 
lx 1. These parameters can be combined into 0' = (a', f, B', 6), an mxl vector 
where m=q+j+k+1. 

Conditional on the initial values of all the data, the log likelihood function 
can be expressed as 

(10) L(0)=IL,(t); L,(0)=-logh,-si/2hl 

In practice, the presample values of the disturbances are set to their expectation, 
zero. The first order conditions for a maximum of this likelihood are given by: 

( 11 ) BL ,/ 8 * = Z ([ s ; - hl - ht , 5e ,] h , 4 ) ahl / 8 */ 2 
-I [8,/ htl[80'/ 80 

The derivatives of the parameters with respect to 0 are simply matrices with 
zeros and ones which select which terms to include for each derivative. The 
second line of (11) is the term relevant for GLS estimation of the regression 
coefficients without ARCH complications, that is when a = 0. The expression in 
(11) gives the standard ARCH model when 8 is zero. 

The primary complexity introduced in this model comes in evaluating Bh2 / B *. 
From (9) this depends upon the derivatives of previous innovations with respect 
to the parameters. Yet these derivatives in turn depend upon the past derivatives 
of h with respect to the parameters if 8 is nonzero. The desired derivatives must 
be computed recursively from an assumption that the initial values do not depend 
upon the parameters. 

In the early analyses presented in Engle, Lilien, and Robins (1982) summarized 
in Section 5, analytical derivatives were calculated recursively and used to evaluate 
(11). However, numerical derivatives gave similar results, were simpler to compute 
and gave added flexibility to changes in specification. They therefore are probably 
the preferred approach for the ARCH-M model. 

Estimation and testing can simply be carried out in terms of these derivatives. 
8L / 8 * can be written compactly in terms ofthe Txm array S with typical element 

Isli = BL,/A*, 

as 

( 12 ) BL / 8 *= S ' i 

where i is a Tx 1 unit vector so the first order condition is simply 

S'i = 0, 
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The Hessian of the log likelihood is the sum of the Hessians of the t conditional 
log likelihoods, Lp Under the assumption that the likelihood function is correctly 
specified, 

9, = EIBL,/a* 04/ 0*'1= -EIR~ Lt/ 3* 0*'1 

where.0, is the information matrix of the tth observation. Defining the information 
in the sample 9 is the average of the information over each observation, 

& = EIS'S / Tl. 

Under slightly stronger conditions , S ' S / Tis also consistent for . 0 . 
A ready solution to the maximization of this likelihood function is to adopt 

the Berndt, Hall, Hall, Hausman (1974) approach using the iteration 

(13) 0'+'= 0'+A(S'S)-ls'i 

with A as a step length which is adjusted from its a priori value of unity by a 
simple line search, and S as the matrix of first derivatives evaluated at 0 *. 

The likelihood is in the form analyzed by Crowder (1976). Under sufficient 
regularity conditions, a solution to (13) will have the property that 

(14) (S'S)!/2(0*- 00) Z N(0, I) 

where 0* is the maximum likelihood estimator obtained from (13) and 0' is the 
true value of the parameters. Unlike the simple ARCH model, this information 
matrix is not block diagonal between the parameters of the mean and the 
parameters of the variance. 

Pantula (1984) has carefully investigated regularity conditions sufficient to 
guarantee (14) in the simple first order ARCH case. His conditions are stronger 
than can be accepted for this study in that he requires the existence of eighth 
order moments of the disturbance which are only finite for very small values of 
the ARCH parameter. Weiss (1986) has suggested some slightly weaker condi-
tions; however, neither has addressed the ARCH-M model. Thus the appropriate-
ness of the asymptotic distribution theory for this analysis remains a conjecture 
at this point. 

Subject to the above caveat, inference procedures are available directly from 
(14). In particular, Wald tests can be computed in standard fashion. Lagrange 
multiplier tests can be simpler if the model has already been estimated under the 
null hypothesis and are easily constructed from the matrix of scores, S. Suppose 
the null hypothesis specifies that 0 € 0' which is a proper subset of 0. Denote 
by So the matrix of scores calculated assuming the more general model to be 
true, but evaluated at the parameter estimates under the null. The scores corre-
sponding to the restricted parameters are the Lagrange multipliers, and their 
variances are given by the information matrix. The LM test can be constructed as 

(15) ~LM = i'SI(SO'SO)-'SO'i 

=TR~ 
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where Rj is the uncentered R2 achieved by regressing the unit vector on the 
matrix of scores under the null. This statistic will asymptotically be chi squared 
with the number of degrees of freedom of the restriction when the null is true. 
This is easily computed from the R2 of the first iteration of (13) starting from 
the estimates found under the null. Thus the tests take a form familiar from Engle 
(1982b, 1984) and it is recommended to construct a battery of diagnostics to 
convey information on the validity of the model both to the user and the reader. 

The LM tests are convenient for testing restrictions in either the mean or the 
variance specification since reestimation may be costly and convergence is some-
times unsure. Tests are easily constructed for variables excluded from the mean 
such as interest rates or other functional forms. It is just as simple to test variance 
restrictions such as a =0, a is a set of linearly declining weights, or elements of 
y are equal to zero (thereby testing for variables excluded from h). Many of the 
variance tests, however, may be interpreted as being on the boundary of the 
admissible parameter space so that one-tailed tests or other adjustments may be 
appropriate. 

For the preferred models in this study h, depended only on the intercept and 
a weighted average of past squared innovations where the weights are assumed 
to be linearly declining. These strong restrictions are subjected to a great variety 
of tests which allow changes in slope, seasonal spikes, freely estimated coefficients, 
and a wide variety of observable variables such as interest rates, volatility, and 
dummy variables for policy regimes. The models generally accept the more 
parsimonious specification at reasonable significance levels either because they 
are close to the true specification or because there is little power in the data to 
discriminate between alternative variance formulations. If the models with less 
restricted parameterizations are iterated toward convergence (for example to 
calculate a Wald or a likelihood ratio test) we found it difficult to prevent 
nonnegativities in the parameters regardless of the types of penalty functions or 
transformations considered. In this case there were likely to be many local maxima 
and generally the likelihood was ill-behaved. Thus the imposition of a par-
simonious specification for the variance function such as linearly declining weights 
appears to be statistically supportable, computationally useful, and economically 
sensible. 

5. THE RESULTS FOR SHORT TERM T-B]LLS 

Using Salomon Brothers data from the Analytical Record of Yields from 1960 
through 1984 II on 3 and 6 month treasury bills, the excess holding yield, yt, was 
calculated as: 

y, = [(1+ R,)2/(1 + r,+1 )]-(1+r,) 
which is approximately 

where R, is the yield on a six month bill and r, is the three month yield, each 
measured at the beginning of the quarter. 
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Regressing the excess holding yield on a constant gives 

(16) y,=.142+ e„ s=.351, 
(4.04) 

L=51.1. 

Thus, the mean of the excess holding yield over the sample period is .142 per 
cent at quarterly rates or .568 per cent at annual rates. The standard deviation 
is .35 at quarterly rates. From the linearized expression for the excess holding 
yield above, the average yield spread was half.568 per cent or .284 per cent at 
annual rates. The maximum return on a three month balanced portfolio obtained 
by borrowing at the three month rate and lending at the six, was 8.2 per cent at 
annual rates. The worst return occurred in the subsequent quarter and was -3.1 
per cent. The rates of return from such portfolios are quite erratic and, as expected, 
are not large especially if transaction costs are important in forming these 
portfolios. 

A glance at the solid line in Figure 1 confirms the changes in variance which 
are hypothesized by the ARCH-M model to account for the changing risk premia. 
The vertical axis is measured in quarterly percentage rates of return. Clearly, the 
period subsequent to the 1979 change in operating procedures shows substantially 
more variability than earlier periods; however, there are also earlier episodes of 
increased variability. Regressing the squared residuals on a fourth order linearly 
declining weighted average of past squared residuals gives the ARCH test as 
TR2= 10.1 which would be X? if there were no ARCH. There is clearly strong 
evidence of heteroscedasticity in the errors. 

4-

3 - - excess holding yield 
------ term premium 

2-

1-
W-
CL 

2 - Jk-. - A-.,+.. /.#M+Lth, 
0 . 

V 
-i-

-2 ,,,I,,,1',,1!' ,1 !,11,'',1i,'1 I''1 
1959 1962 i965 1968 1972 1975 1978 198i 1985 

Time 
FIGURE 1-Excess hold yietd of 6 month Treasury Bills and estimated risk premia. 
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Regressing the excess holding yield on a constant and allowing ARCH disturb-
ances of fourth order gives: 

(17) y, =.048 + ef, hl=.004+ 1.90 I '4'10&-7 
(3.77) (.95) (7.3) ™1,4 

L=85.17, w~=(5-T)/10 (T=1,...,4). 
The ARCH effect is very strong, showing a t statistic of 7.3. The magnitude is 
also very large as values over 1 imply nonstationary variance processes. The 
estimate of the mean changes dramatically when the high variance periods are 
given less weight in the regression; the constant term premium falls to .048 per 
cent at a quarterly rate or .2 per cent at annual rates. 

The time varying risk premium has been swept into the disturbance term in 
(17) and represents misspecification. The hypothesized true model, as presented 
in Section 2, can be formalized as: 
( 18 ) y , = B + 8h ,+ 4 , 

g, /past information- N(0, h?), 

hi=y+0£ I w,EL, w,=(5-·r)/10 (T=1 
,=I,4 

The maximum likelihood estimates and their t statistics are: 

(19) y, = -.0241 +.687 h,+ e<, 
(-1.29) (5.15) 

hl =.0023+ 1.64 I w.~L.. 
(1.08) (6.30) 

L = 96.34, w. =(5- T)/10 (T=1,...,4) 
As can be easily seen, all the slope coefficients are highly significant, indicating 
that there is not only an ARCH effect (a # 0), but also a time varying risk premium 
(8 00). The expected riskless return is negative but not significantly so and the 
minimum possible expected return which would be achieved if all recent forecasts 
had been precisely correct, is very small and positive (.0009). The risk premium 
is two thirds of the standard deviation of the return, which is quite substantial, 
indicating stronger risk aversion by the borrowers than the lenders in this market. 

The parameter in the ARCH equation is above one which implies that the 
unconditional variance of the excess holding yield is infinite with a fat tailed 
distribution. The conditional distribution,which for most purposes is the relevant 
distribution, is of course still normal with a finite variance. An arbitrarily large 
return could occur if a sufficiently long string of innovations were all large. Such 
an episode would be easily reversed by a number of innovations near their median 
value of zero. Simulations of this situation show rather sensibly behaved series 
with larger bursts of volatility than would be expected from a marginally normal 
random variable. It is possible that the maximum likelihood estimates will not 
have their standard properties, but, as in the unit root case, they may have superior 
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convergence rates and correctly calculated standard errors. As mentioned in the 
previous section, the asymptotic distribution theory for this problem remains to 
be solved. The infinite unconditional variance may be related to the frequent 
failures of the variance bounds tests for interest rates. 

A series of diagnostic tests were calculated for the model in (19). Although 
several were significant, the tests for the functional relationship between the risk 
and rate of return are of particular interest. LM tests for omitted variables h?, 
exp (h,), and log (h,) were computed to test the assumed linearity between the 
standard deviation and mean of returns. Economic theory has little to say on the 
nature of this trade-off as it presumably depends on the risk preferences of the 
traders. Only the log variable was significant with a test statistic of 4.13. Estimating 
the model with both h, and log (h,) produced t statistics of 2.0 on the log and 
-.4 on the level and a log likekihood of L= 101.62, thereby confirming that the 
model with the log of standard deviation is superior to that in the level of the 
standard deviation. 

The final preferred model is therefore: 

(20) y, =.355 +.135 log h, + e„ 
(4.38) (3.36) 

hi =. 005 + 1 . 48 I ¥ 481 - T , 
(2.22) (5.56) '='·4 

L=101.35, w.= (5 - «10. 

In this model all the coefficients are significant and the log likelihood is substan-
tially above that of (19). The minimum term premium occurring when all past 
idnovations are zero is now a very small negative value of -.008 per cent at 
quarterly rates. 

Several sets of diagnostic tests were performed with this model as well. These 
are summarized in Table I. Volatility is defined by: 

2 Volatility = I w.y f-T, WT =(5- T)/10, 
T = I,4 

so that it differs from the ARCH variance by the time varying risk premium. One 
would expect that the weighted average of residuals would give a better estimate 
of the true residual variance than the same function of the dependent variable; 
however there is no guarantee. Table I shows the robustness of the model in (20) 
to a variety of types of misspecification. None of the tests is significant at the 5 
per cent level. The tests check for nonlinearities in the risk premium, volatility, 
structural shifts in October 1979, and misspecificatiorls of the ARCH process 
through omitted variables or inappropriately applied constraints. The ARCH 
model with log Volatility alone achieves only log likelihood L = 98.4 although 
the significance and size of the variables is nearly the same as in (20). 

The economically most interesting test is that for the yield spread and we turn 
to a more careful analysis of this model. Mankiw and Summers (1984) (MS) find 
that the yield spread is a significant and positive determinant of the excess holding 
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TABLE I 
DIAGNOSTIC TESTS FOR ARCH·M MODEL (20) 

Vailnble TR' Distribution 

Variables Omitted from the Mean 

h, .31 -
M 1.67 -
Volatility 1.44 -
Log Volatility .50 -
Post October 1979 Dummy .38 -

.60 -
R, .83 
R ,- r , 2 . 92 - 
y ,- 1 . 14 - 
9 ,- 4 3 . 38 - 

:i 
X1 

:i 
id 
Ri 
xt 

Variables Omitted from the Variance 
Volatility .27 -
Post October 1979 Dummy .07 -
r, 1.64 -
R, 1.60 

.90 -

.31 -

.62 
2 2 3.11 -E,.j, E,-2, E,-3 

E w,01-7, W7 = (13 - ,)/78, T= 1, ...,12 .76 -

:i 
pit 

X1 

yield. This implies a failure in the expectations hypothesis and a failure of an 
alternative hypothesis that long rates are overly sensitive to short rates. Our data 
set gives the following least squares estimate for this model: 
(21) y,=-.50+2.44(R,-r,)+er, o-=.312. 

(-1.10) (5.46) 
The corresponding coefficient and t statistic in MS for the yield spread are 1.72 
and 3.1 respectively. Their data set is a little shorter, from a different source and 
embodies the Shiller linearizations. 

Adding the yield spread to model (20) gives: 

(22) y, =.325+.130 log h,+.392 (R, - r,)+ er, 
(4.28) (3.59) (2.58) 

hf =.004+ 1.64 I w,g f-7' 
2 

(1.38) (4.86) 
L=103.48, w. = (5 - «10 (T=1,..., 4). 

It now can be seen that by both Wald and LR tests the yield spread is a significant 
determinant at the 5 per cent but not 1 per cent level and by the LM test it is 
significant at the 10 per cent but not 5 per cent level. By economic standards the 
size of the coefficient on the yield spread has fallen dramatically from the least 
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TABLE Il 
ESTIMATES o F VARIOUS ARCH-M MODELS 

EXCESS HOLD]NG YIELD OF 6 MONTH T-BILLS 

]ndep 59.1-84 2 59.1-71 3 71.4-842 59.1-79.3 61.3-74.1 

Log h, .135 .092 .196 .177 .093 
(336) (3.88) (2.40) (2.96) (2.01) 

Const. .355 .272 .455 446 .261 
(4.38) (4.31) (3.36) (3.72) (2.52) 

ARCH a 1.48 1.67 1.49 1.25 1.20 
(5.56) (5.15) (3.57) (4.60) (2.84) 

squares fit. The rest of the parameter estimates are very close to those obtained 
before in (20). Economically, it is not surprising to find some residual effect in 
the yield spread. The expected value of the spread is approximately proportional 
to the risk premium this period. Since it is highly autocorrelated, it will be a very 
good predictor of the risk premium next period. If information other than past 
innovations is useful in forecasting risk premia, then one might expect to find a 
significant coefficient on the past yield spread. A useful extension would be to 
allow the yield spread to directly influence the variance and consequently to 
indirectly influence the risk premium. 

As much of the variance in interest rates is concentrated at the end of the 
sample period, the model was reestimated using subsets of the data. Surprisingly, 
the results are relatively insensitive to the sample period both in magnitude and 
in significance. See Table II. 

Figure 1 plots the excess holding yield and the estimated risk premium. The 
scale is in quarterly percentage rates of return. The term premium rises to its 
highest value (.41 per cent quarterly or 1.64 per cent annual rates) in the fourth 
quarter of 1980. Over the sample period there are two values which are very 
slightly negative. On average, the term premium is .14 per cent. Although the 
most interesting and noticeable rise in the term premium is 1979-1984, there are 
also relative increases in 1960, 1972, and 1975, each of which is accompanied by 
an increase in volatility of the excess holding yield. 

6. MODELLING OTHER INTEREST RATES 

Two additional interest rate series have been modelled using the ARCH-M 
model and more are in progress. The first is the monthly data set constructed by 
Fama (1976) on two month vs. one month treasury bills from 1953.1 to 1971.7. 
The data set differs from that used above in the sampling interval and in the 
sample period. In this case the holding period is naturally taken to be one month 
rather than one quarter and consequently the riskless asset is the one month 
treasury bill rather than two or three month treasury bills. If a quarter is the 
correct interval, then shorter lived assets must be rolled over at uncertain rates 
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and therefore, the short term asset would be the risky one. For a theoretical 
discussion of these issues see Woodward (1983). 

The model in (18) was estimated directly although a longer lag was allowed 
in the ARCH process to give a comparable memory to the variance estimator. 
The results are: 

(23) y, = -.00052+.80 h„ hi=cotl.13 I W.e 

(-1.2) (4.7) (8.6)' =t,12 

2 
1-7, 

w, = (13 - T)/78 (T=1,..., 12). 
These are quite similar to those in equation (19) where in both cases the ARCH 
parameters are in the explosive range and the coefficient of the standard deviation 
is highly significant with a value of .69 before and .8 here. The estimated risk 
premium is plotted in Figure 2. 

A somewhat different result was obtained using 20 year AAA corporate bonds 
from 1953.1 to 1980.2. Assuming that the bonds are effectively infinitely lived, 
the one quarter excess holding yield can be expressed in terms of the quarterly 
yield to maturity, Rt, and the three month treasury bill rate, r,: 

y: = Ri- r,- l +R,/ R,+b 

The average return from holding long term bonds and borrowing at the t-bill 
rate is -.75 per cent at quarterly rates or -3 per cent at annual rates. Thus bond 
holders have taken a loss over this sample period in spite of the fact that the 
average long term rate was 5.9 per cent while the short term rate was only 4.6 
per cent. This is a consequence of unexpected increases in interest rates possibly 
due to unexpected acceleration of inflation. 

Maximum likelihood estimation of (18) produced: 
2 ( 24 ) y , = - 2 . 8 +. 505 hr , h ? = cot . 75 I WT £ t - 7 , 

(-2.2)(1.6) (2.6) T=1,4 

w. =(5- T)/10 (, =1,..., 4), 

.300 

Quarterly Percentage 
Rotes 

033 
19531 1971 

FIGURE 2-Conditional standard errors of one month forward rates. 
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Quorlerly Percentoge Rotes 

280 1953 I i980 II 
FIGURE 3-Conditional standard errors of quarterly holding yields for Moody's Aaa bond. 

for the fourth order ARCH-M model, and 

(25) y, = -3.3+.651 h„ h,2=co+.86 I w,4, 
(-2.4)(1.9) (3.4)' =1,12 

w, = (13 - T)/78 (T =1,..., 12), 
for the twelfth order model. 

These estimates differ from the short end of the spectrum in that they no longer 
exhibit the explosive ARCH parameter, the coefficient on the risk premium is 
roughly the same size but has a larger standard error, and the intercept is 
considerably more negative. When (25) is estimated on data prior to 1978, the 
coefficient on hr rises slightly to .84 but the f statistic falls to 1.7. Thus the same 
model appears to be appropriate; however, the. significance falls due to the 
omission of the highly volatile period of 1979 and 1980. The estimated risk 
premium is plotted in Figure 3. 

Further analysis of these two series is contained in Engle, Lilien, and Robins 
(1982). 

7. CONCLUSIONS 

The precision with which agents can predict the future varies significantly over 
time. In relatively quiet periods, like the mid-1960's, relatively accurate forecasts 
can be made and agents can speculate on the future without absorbing large 
risks. In volatile periods, like the early 1970's and early 1980's, forecasts are less 
certain and speculation is riskier. Risk premia therefore adjust to induce investors 
to absorb the greater uncertainty associated with holding the risky asset. 

In this paper we have extended the simple ARCH technique of measuring 
conditional variances to the ARCH-M model where the conditional variance is 
a determinant of the current risk premium, and thus enters the forecasting equation 
of expected financial returns. Our results from applying this model to three 
different data sets of bond holding yields are quite promising. ARCH was clearly 
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present in the forecast errors of bond holding yields indicating substantial vari-
ation in the degree of uncertainty over time. This measure of uncertainty proved 
very significant in explaining the expected returns in two of the data sets, and 
was significant only at slightly more than the 5 per cent level for the third. We 
therefore conclude that risk premia are not time invariant; rather they vary 
systematically with agent's perceptions of underlying uncertainty. 

While our initial results suggest the promise of the ARCH technique to applica-
tions that require the measurement of uncertainty, we feel that the current model 
is but a first step. The ARCH framework may be applied to more general models 
of uncertainty and risk. For example, the capital asset pricing model suggests 
that risk premia are not a function of simple risk, but rather of undiversifiable 
risk. Risk premia therefore depend on the covariance of asset returns with the 
returns of the market as a whole. The general ARCH framework may be extended 
to allow conditional covariances to vary, resulting in time varying risk betas. 
Such a model is beyond the scope of the current paper and is mentioned to give 
some indication of possible extensions of our much simpler approach. 
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SOAH DOCKET NO. 473-21-0538 
PUC DOCKET NO. 51415 

SOUTHWESTERN ELECTRIC POWER COMPANY'S RESPONSE TO 
CITIES ADVOCATING REASONABLE DEREGULATION'S 

THIRD SET OF REQUESTS FOR INFORMATION 

Question No. CARD 3-23: 

With reference to pages 48-51 of Mr. D'Ascendis testimony, please: (1) list all regulatory cases 
(by utility name, docket number, and filing date) in which Ms. Mr. D'Ascendis has provided rate 
of return testimony and used a non-price regulated proxy group to estimating a market risk 
premium; (2) indicate all cases (by name, docket number, and date), a regulatory commission has 
specifically used the equity cost rate results for Mr. D'Ascendis' non-price regulated proxy group 
approach in arriving at an overall rate of return for a utility; and (3) provide copies ofthe 'Rate of 
Return' section of the Commission's decisions for all cases in which a regulatory commission has 
adopted the equity cost rate results for Mr. D'Ascendis' non-price regulated proxy group. 

Response No. CARD 3-23: 

1. Mr. D'Ascendis does not use a non-price regulated group to estimate a market risk 
premium in his analysis on pages 48-51 of his Direct Testimony. 

2. Please refer to Mr. D'Ascendis' response to CARD 3-21, part (2). 

3. Please refer to Mr. D'Ascendis' response to CARD 3-21, part (3). 

Sponsored By: Dylan D'Ascendis Title: Director, ScottMadden, Inc. 

Sponsored By: Dylan D'Ascendis Title: Director, ScottMadden, Inc. 



SOAH DOCKET NO. 473-21-0538 
PUC DOCKET NO. 51415 

SOUTHWESTERN ELECTRIC POWER COMPANY'S RESPONSE TO ~ 
CITIES ADVOCATING REASONABLE DEREGULATION'S 

THIRD SET OF REOUESTS FOR INFORMATION 

Question No. CARI) 3-24: 

With reference to page 57 of Mr. D'Ascendis' testimony, please provide: (1) the dates land the 
amounts of equity flotation costs paid by the Company over the 2016-20 time period; i and (2) 
copies of invoices and the associated checks which demonstrate that the Company paid the 
flotation costs. 

Response No. CARD 3-24: 

As stated on page 57 of Mr. D'Ascendis' testimony, no analyses regarding flotation costs were 
performed in this proceeding. 

Sponsored By: Dylan D'Ascendis Title: Director, ScottMadden, Inc. 

Sponsored By: Dylan D'Ascendis Title: Director, ScottMadden, Inc. 



SOAH DOCKET NO. 473-21-0538 
PUC DOCKET NO. 51415 

SOUTHWESTERN ELECTRIC POWER COMPANY'S RESPONSE TO 
CITIES ADVOCATING REASONABLE DEREGULATION'S 

THIRD SET OF REOUESTS FOR INFORMATION 

Question No. CARD 3-25: 

With reference to pages 56-7 of Mr. D'Ascendis' testimony and Schedule DVD-8, please provide 
copies ofall data, source documents, studies, and analyses used to justify and estimate the small 
size premium. 

Response No. CARD 3-25: 

Please refer to the response to CARD 3-15. 

Sponsored By: Dylan D'Ascendis Title: Director, ScottMadden, Inc. 

Sponsored By: Dylan D'Ascendis Title: Director, ScottMadden, Inc. 


